Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Neurotox Res ; 41(6): 559-570, 2023 Dec.
Article En | MEDLINE | ID: mdl-37515718

Quinolinic acid (QUIN) is a toxic compound with pro-oxidant, pro-inflammatory, and pro-apoptotic actions found at high levels in the central nervous system (CNS) in several pathological conditions. Due to the toxicity of QUIN, it is important to evaluate strategies to protect against the damage caused by this metabolite in the brain. In this context, coenzyme Q10 (CoQ10) is a provitamin present in the mitochondria with a protective role in cells through several mechanisms of action. Based on these, the present study was aimed at evaluating the possible neuroprotective role of CoQ10 against damage caused by QUIN in the striatum of young Wistar rats. Twenty-one-day-old rats underwent a 10-day pretreatment with CoQ10 or saline (control) intraperitoneal injections and on the 30th day of life received QUIN intrastriatal or saline (control) administration. The animals were submitted to behavior tests or euthanized, and the striatum was dissected to neurochemical studies. Results showed that CoQ10 was able to prevent behavioral changes (the open field, object recognition, and pole test tasks) and neurochemical parameters (alteration in the gene expression of IL-1ß, IL-6, SOD, and GPx, as well as in the immunocontent of cytoplasmic Nrf2 and nuclear p-Nf-κß) caused by QUIN. These findings demonstrate the promising therapeutic effects of CoQ10 against QUIN toxicity.


Quinolinic Acid , Ubiquinone , Rats , Animals , Ubiquinone/pharmacology , Rats, Wistar , Quinolinic Acid/toxicity , Oxidation-Reduction , Oxidative Stress
2.
Mol Neurobiol ; 60(9): 5468-5481, 2023 Sep.
Article En | MEDLINE | ID: mdl-37314655

Homocysteine (Hcy) is a risk factor for neurodegenerative diseases, such as Alzheimer's Disease, and is related to cellular and tissue damage. In the present study, we verified the effect of Hcy on neurochemical parameters (redox homeostasis, neuronal excitability, glucose, and lactate levels) and the Serine/Threonine kinase B (Akt), Glucose synthase kinase-3ß (GSK3ß) and Glucose transporter 1 (GLUT1) signaling pathway in hippocampal slices, as well as the neuroprotective effects of ibuprofen and rivastigmine alone or in combination in such effects. Male Wistar rats (90 days old) were euthanized and the brains were dissected. The hippocampus slices were pre-treated for 30 min [saline medium or Hcy (30 µM)], then the other treatments were added to the medium for another 30 min [ibuprofen, rivastigmine, or ibuprofen + rivastigmine]. The dichlorofluorescein formed, nitrite and Na+, K+-ATPase activity was increased by Hcy at 30 µM. Ibuprofen reduced dichlorofluorescein formation and attenuated the effect of Hcy. The reduced glutathione content was reduced by Hcy. Treatments with ibuprofen and Hcy + ibuprofen increased reduced glutathione. Hcy at 30 µM caused a decrease in hippocampal glucose uptake and GLUT1 expression, and an increase in Glial Fibrillary Acidic Protein-protein expression. Phosphorylated GSK3ß and Akt levels were reduced by Hcy (30 µM) and co-treatment with Hcy + rivastigmine + ibuprofen reversed these effects. Hcy toxicity on glucose metabolism can promote neurological damage. The combination of treatment with rivastigmine + ibuprofen attenuated such effects, probably by regulating the Akt/GSK3ß/GLUT1 signaling pathway. Reversal of Hcy cellular damage by these compounds may be a potential neuroprotective strategy for brain damage.


Neuroprotective Agents , Rats , Animals , Male , Neuroprotective Agents/pharmacology , Neuroprotective Agents/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rivastigmine/pharmacology , Ibuprofen/pharmacology , Glucose Transporter Type 1/metabolism , Rats, Wistar , Glycogen Synthase Kinase 3 beta/metabolism , Signal Transduction , Hippocampus/metabolism , Glutathione/metabolism , Glucose/metabolism , Homocysteine
3.
Environ Toxicol Pharmacol ; 101: 104190, 2023 Aug.
Article En | MEDLINE | ID: mdl-37336278

The neonicotinoid imidacloprid was promoted in the market because of widespread resistance to other insecticides, plus its low mammalian impact and higher specific toxicity towards insects. This study aimed to evaluate the immunomodulatory effect of imidacloprid on macrophages. RAW 264.7 cells were incubated to 0-4000 mg/L of imidacloprid for 24 and 96 h. Imidacloprid presented a concentration-dependent cytotoxicity after 24 h and 96 h incubation for MTT reduction (3-(4,5-dimethyl-thiazol-2-yl)- 2,5-diphenyltetrazolium bromide) (EC50 519.6 and 324.6 mg/L, respectively) and Neutral Red (3-amino-7-dimethylamino-2-methylphenazine hydrochloride) assays (EC50 1139.0 and 324.2 mg/L, respectively). Moreover, imidacloprid decreased the cells' inflammatory response and promoted a mitochondrial depolarization. The complex II and succinate dehydrogenase (SDH) activities in RAW 264.7 cells incubated with imidacloprid increased more at 24 h. These results suggest that imidacloprid exerts an immunomodulatory effect and mitochondria can act as regulator of innate immune responses in the cytotoxicity mediated by the insecticide in RAW 264.7 cells.


Insecticides , Nitro Compounds , Animals , Mice , RAW 264.7 Cells , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Insecticides/toxicity , Macrophages , Mammals
4.
Front Pharmacol ; 14: 1179723, 2023.
Article En | MEDLINE | ID: mdl-37153798

Introduction: Sepsis is defined as a multifactorial debilitating condition with high risks of death. The intense inflammatory response causes deleterious effects on the brain, a condition called sepsis-associated encephalopathy. Neuroinflammation or pathogen recognition are able to stress cells, resulting in ATP (Adenosine Triphosphate) release and P2X7 receptor activation, which is abundantly expressed in the brain. The P2X7 receptor contributes to chronic neurodegenerative and neuroinflammatory diseases; however, its function in long-term neurological impairment caused by sepsis remains unclear. Therefore, we sought to evaluate the effects of P2X7 receptor activation in neuroinflammatory and behavioral changes in sepsis-surviving mice. Methods: Sepsis was induced in wild-type (WT), P2X7-/-, and BBG (Brilliant Blue G)-treated mice by cecal ligation and perforation (CLP). On the thirteenth day after the surgery, the cognitive function of mice was assessed using the novel recognition object and Water T-maze tests. Acetylcholinesterase (AChE) activity, microglial and astrocytic activation markers, and cytokine production were also evaluated. Results: Initially, we observed that both WT and P2X7-/- sepsis-surviving mice showed memory impairment 13 days after surgery, once they did not differentiate between novel and familiar objects. Both groups of animals presented increased AChE activity in the hippocampus and cerebral cortex. However, the absence of P2X7 prevented partly this increase in the cerebral cortex. Likewise, P2X7 absence decreased ionized calcium-binding protein 1 (Iba-1) and glial fibrillary acidic protein (GFAP) upregulation in the cerebral cortex of sepsis-surviving animals. There was an increase in GFAP protein levels in the cerebral cortex but not in the hippocampus of both WT and P2X7-/- sepsis-surviving animals. Pharmacological inhibition or genetic deletion of P2X7 receptor attenuated the production of Interleukin-1ß (IL-1ß), Tumor necrosis factor-α (TNF-α), and Interleukin-10 (IL-10). Conclusion: The modulation of the P2X7 receptor in sepsis-surviving animals may reduce neuroinflammation and prevent cognitive impairment due to sepsis-associated encephalopathy, being considered an important therapeutic target.

5.
Behav Brain Res ; 445: 114362, 2023 05 08.
Article En | MEDLINE | ID: mdl-36889464

Promising evidence points to gestational physical exercise as the key to preventing various disorders that affect the offspring neurodevelopment, but there are no studies showing the impact of resistance exercise on offspring health. Thus, the aim of this study was to investigate whether resistance exercise during pregnancy is able to prevent or to alleviate the possible deleterious effects on offspring, caused by early life-stress (ELS). Pregnant rats performed resistance exercise throughout the gestational period:they climbed a sloping ladder with a weight attached to their tail, 3 times a week. Male and female pups, on the day of birth (P0), were divided into 4 experimental groups: 1) rats of sedentary mothers (SED group); 2) rats of exercised mothers (EXE group); 3) rats of sedentary mothers and submitted to maternal separation (ELS group) and 4) rats of exercised mothers and submitted to MS (EXE + ELS group). From P1 to P10, pups from groups 3 and 4 were separated from their mothers for 3 h/day. Maternal behavior was assessed. From P30, behavioral tests were performed and on P38 the animals were euthanized and prefrontal cortex samples were collected. Oxidative stress and tissue damage analysis by Nissl staining were performed. Our results demonstrate that male rats are more susceptible to ELS than females, showing impulsive and hyperactive behavior similar to that seen in children with ADHD. This behavior was attenuated by the gestational resistance exercise. Our results demonstrate, for the first time, that resistance exercise performed during pregnancy seems to be safe for the pregnancy and offspring's neurodevelopment and are effective in preventing ELS-induced damage only in male rats. Interestingly, resistance exercise during pregnancy improved maternal care and it is reasonable to propose that this finding may be related to the protective role on the animals neurodevelopment, observed in our study.


Adverse Childhood Experiences , Resistance Training , Pregnancy , Humans , Rats , Animals , Female , Male , Rats, Wistar , Maternal Deprivation , Mothers
7.
Life Sci ; 310: 121084, 2022 Dec 01.
Article En | MEDLINE | ID: mdl-36257458

AIMS: Throughout gestation, proteins in the diet are a source of essential amino acids that are crucial for proper healthy fetal growth and development. The present study was proposed to investigate the effect of high-protein diet consumption throughout pregnancy on redox homeostasis, neuroinflammatory status and amino acid levels, including homocysteine, in the male adolescent rats offspring's cerebral cortex. We also performed a battery of behavioral tests to evaluate maternal care, olfactory preference, exploratory capacity, habituation, memory, anxiety- and depression-like behavior motor activity in the offspring. MAIN METHODS: After pregnancy confirmation, the pregnant rats were randomly divided into two groups, according to the diet: group 1, (control) standard diet containing 20 % protein, and group 2, the high-protein diet containing 50 % protein. Throughout the gestational period, the pregnant rats received experimental diets. KEY FINDINGS: Results showed an increase in homocysteine levels and neuroinflammatory mediators in the offspring's cerebral cortex from pregnant rats supplemented with a high-protein diet throughout pregnancy. Besides decreasing histidine levels in offspring's serum. The results also revealed an impairment in memory and motricity and an increase in anxiety-like behavior in the offspring supplemented with a high-protein diet throughout pregnancy. Our findings showed a significant effect of high-protein diet consumption throughout pregnancy on offspring's neurobiochemistry, which can negatively impact behavioral performance. SIGNIFICANCE: Our results reinforce the importance of consuming a balanced diet during the gestational period, especially macronutrients such as proteins since the fetus is sensitive to the mother's diet during pregnancy which may impact the development of the offspring.


Neuroinflammatory Diseases , Prenatal Exposure Delayed Effects , Pregnancy , Humans , Female , Animals , Rats , Male , Prenatal Nutritional Physiological Phenomena , Diet/adverse effects , Anxiety/etiology , Homocysteine
8.
Neurotox Res ; 40(2): 473-484, 2022 Apr.
Article En | MEDLINE | ID: mdl-35239160

Quinolinic acid (QUIN) is an important agonist of NMDA receptors that are found at high levels in cases of brain injury and neuroinflammation. Therefore, it is necessary to investigate neuroprotection strategies capable of neutralizing the effects of the QUIN on the brain. Coenzyme Q10 (CoQ10) is a provitamin that has an important antioxidant and anti-inflammatory action. This work aims to evaluate the possible neuroprotective effect of CoQ10 against the toxicity caused by QUIN. Striatal slices from 30-day-old Wistar rats were preincubated with CoQ10 25-100 µM for 15 min; then, QUIN 100 µM was added to the incubation medium for 30 min. A dose-response curve was used to select the CoQ10 concentration to be used in the study. Results showed that QUIN caused changes in the production of ROS, nitrite levels, activities of antioxidant enzymes, glutathione content, and damage to proteins and lipids. CoQ10 was able to prevent the effects caused by QUIN, totally or partially, except for damage to proteins. QUIN also altered the activities of electron transport chain complexes and ATP levels, and CoQ10 prevented totally and partially these effects, respectively. CoQ10 prevented the increase in acetylcholinesterase activity, but not the decrease in the activity of Na+,K+-ATPase caused by QUIN. We also observed that QUIN caused changes in the total ERK and phospho-Akt content, and these effects were partially prevented by CoQ10. These findings suggest that CoQ10 may be a promising therapeutic alternative for neuroprotection against QUIN neurotoxicity.


Antioxidants , Quinolinic Acid , Acetylcholinesterase/metabolism , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Energy Metabolism , Homeostasis , Oxidation-Reduction , Quinolinic Acid/toxicity , Rats , Rats, Wistar , Signal Transduction , Ubiquinone/pharmacology
9.
Mol Neurobiol ; 59(4): 2150-2170, 2022 Apr.
Article En | MEDLINE | ID: mdl-35044624

Pregnancy diet can impact offspring's neurodevelopment, metabolism, redox homeostasis, and inflammatory status. In pregnancy, folate demand is increased due to the requirement for one-carbon transfer reactions. The present study was proposed to investigate the effect of folic acid supplementation throughout pregnancy on a battery of behavior tests (olfactory preference, motor activity, exploratory capacity, habituation, memory, anxiety- and depression-like behavior). Redox homeostasis and neuroinflammatory status in cerebral cortex were also investigated. After pregnancy confirmation, the pregnant rats were randomly divided into two groups, according to the diet: group 1, (control) standard diet (2 mg/kg diet of folic acid) and group 2, supplemented diet with 4 mg/kg diet of folic acid. Throughout the gestational period, the pregnant rats received experimental diets. Results show that the supplemented diet with 4 mg/kg diet of folic acid throughout pregnancy impaired memory and motricity of the offspring when compared with control (standard diet). It was also observed an increase in anxiety- and depression-like behavior in this group. Nitrite levels increased in cerebral cortex of the offspring, when compared to control group. In contrast, iNOS expression and immunocontent were not altered. Moreover, we identify an increase in TNF-α, IL-1ß, IL-6, IL-10, and MCP-1 gene expression in the cerebral cortex. In conclusion, our study showed that the supplemented diet with 4 mg/kg diet of folic acid throughout pregnancy may cause behavioral and biochemical changes in the male offspringGraphical abstract After pregnancy confirmation, the pregnant rats were randomly divided into two groups, according to the diet: group 1, (control) standard diet (2 mg/kg diet of folic acid) and group 2, supplemented diet with 4 mg/kg diet of folic acid. Throughout the gestational period, the pregnant rats received experimental diets. Results show that folic acid supplementation did not impair the mother-pup relationship. We showed that supplemented diet with 4 mg/kg diet of folic acid during pregnancy impairs memory and motricity of the offspring when compared with standard diet. It was also observed an increase in anxiety- and depression-like behavior in this group. Nitrative stress and neuroinflammation parameters were increased in the cerebral cortex of the offspring. ROS, reactive oxygen species.


Folic Acid Deficiency , Prenatal Exposure Delayed Effects , Animals , Dietary Supplements , Female , Folic Acid/pharmacology , Folic Acid Deficiency/complications , Humans , Male , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Rats
10.
Food Res Int ; 151: 110864, 2022 01.
Article En | MEDLINE | ID: mdl-34980400

This study determined the bioactive composition and antioxidant potential of parsley, chives and their mixture (Brazilian cheiro-verde). Additionally, the effect of these herbs against cholesterol oxidation in grilled sardines (Sardinella brasiliensis) was also investigated. Ultra-high Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (UHPLC-ESI-MS) analyses revealed the presence of phenolic acids (caffeic, chlorogenic, and ferulic acids) and flavonoids (apigenin, kaempferol, catechin) in the herbs. Higher levels of phenolics (2.10 ± 0.02 mg GAE/g) and carotenoids (205.95 ± 0.17 µg/g) were determined in parsley extracts. Moreover, parsley also presented higher antioxidant capacity by DPPH (59.21 ± 0.07 %) and ORAC (109.94 ± 18.7 µM TE/g) than the other herbs. In vivo analyses demonstrated that the herbs' extracts decreased the damage on Saccharomyces cerevisiae cells exposed to H2O2, except the chives extract at 10 µg/mL. Higher levels of cholesterol oxidation products (COPs) were determined after grilling. The total COPs increased from 61.8 ± 0.7 (raw fish) to 139.7 ± 10.1 µg/g (control). However, the addition of herbs effectively reduced cholesterol oxides formation, this effect was more pronounced in fish containing 4% parsley and 4% cheiro-verde. Promising results were found for cheiro-verde; however, it did not present synergic antioxidant effects.


Chive , Petroselinum , Animals , Antioxidants/pharmacology , Cholesterol , Hydrogen Peroxide , Plant Extracts/pharmacology
11.
Neurotox Res ; 38(1): 50-58, 2020 Jun.
Article En | MEDLINE | ID: mdl-32219734

Kynurenic acid (KYNA) and quinolinic acid (QUIN) are metabolites formed in the degradation of tryptophan (Trp). QUIN is a selective NMDA receptor antagonist and may exert neurotoxic effects, whereas KYNA is an agonist of glutamatergic and cholinergic receptors and presents antioxidant properties. KYNA/QUIN ratio is decreased in several central nervous system disorders, but the mechanisms involved are not well elucidated. In the present study, we try to determine the neuroprotective capacity of KYNA on the QUIN effects in redox homeostasis changes (H2DCF oxidation, superoxide dismutase/catalase (SOD/CAT) ratio, glutathione peroxidase (GPx) activity, sulfhydryl content, and nitrite levels), as well as on inflammatory parameters (levels of TNF-α, IL-1ß, and IL-6). KYNA and QUIN effects on the activities of Na+,K+-ATPase and acetylcholinesterase (AChE) were also evaluated. Thirty-day-old male Wistar rats underwent stereotactic surgery and received intrastriatal injections as follows: group 1-control (PBS-injected), group 2-KYNA (100 µM), group 3-QUIN (150 nM), and group 4-KYNA + QUIN (KYNA-injected followed QUIN-injected). Results demonstrated that the KYNA administration was able to prevent the increase in reactive oxygen species, SOD/CAT ratio, and pro-inflammatory cytokines (IL-1ß and IL-6) and the decrease in GPx activity, sulfhydryl content, and nitrite levels caused by QUIN. KYNA was also able to partially prevent the decrease in Na+,K+-ATPase activity and the increase in AChE activity caused by QUIN. This study may help in the elucidation of neuroprotective effects of KYNA against oxidative and inflammatory insults caused by QUIN in the striatum of young male Wistar rats.


Corpus Striatum/drug effects , Corpus Striatum/metabolism , Encephalitis/metabolism , Homeostasis/drug effects , Kynurenic Acid/administration & dosage , Neuroprotective Agents/administration & dosage , Oxidation-Reduction/drug effects , Quinolinic Acid/administration & dosage , Animals , Antioxidants/administration & dosage , Encephalitis/chemically induced , Inflammation Mediators/metabolism , Male , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
12.
Metab Brain Dis ; 35(5): 765-774, 2020 06.
Article En | MEDLINE | ID: mdl-32189127

During chronic inflammatory disease, such asthma, leukocytes can invade the central nervous system (CNS) and together with CNS-resident cells, generate excessive reactive oxygen species (ROS) production as well as disbalance in the antioxidant system, causing oxidative stress, which contributes a large part to neuroinflammation. In this sense, the aim of this study is to investigate the effects of treatment with neostigmine, known for the ability to control lung inflammation, on oxidative stress in the cerebral cortex of asthmatic mice. Female BALB/cJ mice were submitted to asthma model induced by ovalbumin (OVA). Control group received only Dulbecco's phosphate-buffered saline (DPBS). To evaluate neostigmine effects, mice received 80 µg/kg of neostigmine intraperitoneally 30 min after each OVA challenge. Our results revealed for the first time that treatment with neostigmine (an acetylcholinesterase inhibitor that no crosses the BBB) was able to revert ROS production and change anti-oxidant enzyme catalase in the cerebral cortex in asthmatic mice. These results support the communication between the peripheral immune system and the CNS and suggest that acetylcholinesterase inhibitors, such as neostigmine, should be further studied as possible therapeutic strategies for neuroprotection in asthma.


Asthma/drug therapy , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cholinesterase Inhibitors/pharmacology , Neostigmine/pharmacology , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Asthma/chemically induced , Asthma/pathology , Bronchoalveolar Lavage Fluid , Catalase/metabolism , Cholinesterase Inhibitors/therapeutic use , Female , Injections, Intraperitoneal , Mice , Mice, Inbred BALB C , Neostigmine/therapeutic use , Neuroprotection , Neuroprotective Agents/therapeutic use , Ovalbumin , Reactive Oxygen Species/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Superoxide Dismutase-1/metabolism
13.
J Cell Physiol ; 235(1): 267-280, 2020 01.
Article En | MEDLINE | ID: mdl-31206674

Studies have shown autophagy participation in the immunopathology of inflammatory diseases. However, autophagy role in asthma and in eosinophil extracellular traps (EETs) release is poorly understood. Here, we attempted to investigate the autophagy involvement in EETs release and in lung inflammation in an experimental asthma model. Mice were sensitized with ovalbumin (OVA), followed by OVA challenge. Before the challenge with OVA, mice were treated with an autophagy inhibitor, 3-methyladenine (3-MA). We showed that 3-MA treatment decreases the number of eosinophils, eosinophil peroxidase (EPO) activity, goblet cells hyperplasia, proinflammatory cytokines, and nuclear factor kappa B (NFκB) p65 immunocontent in the lung. Moreover, 3-MA was able to improve oxidative stress, mitochondrial energy metabolism, and Na+ , K+ -ATPase activity. We demonstrated that treatment with autophagy inhibitor 3-MA reduced EETs formation in the airway. On the basis of our results, 3-MA treatment can be an interesting alternative for reducing lung inflammation, oxidative stress, mitochondrial damage, and EETs formation in asthma.


Adenine/analogs & derivatives , Anti-Asthmatic Agents/pharmacology , Asthma/drug therapy , Autophagy/immunology , Extracellular Traps/immunology , Adenine/pharmacology , Animals , Asthma/chemically induced , Asthma/pathology , Bronchoalveolar Lavage Fluid/cytology , Cytokines/metabolism , Disease Models, Animal , Energy Metabolism/drug effects , Eosinophil Peroxidase/metabolism , Eosinophils/immunology , Female , Goblet Cells/pathology , Lung/pathology , Mice , Mice, Inbred BALB C , Mitochondria/metabolism , Ovalbumin , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Transcription Factor RelA/metabolism
14.
J Cell Physiol ; 235(2): 1838-1849, 2020 02.
Article En | MEDLINE | ID: mdl-31332773

Asthma is characterized by the influx of inflammatory cells, especially of eosinophils as well as reactive oxygen species (ROS) production, driven by the release of the T helper 2 (Th2)-cell-associated cytokines. The cholinergic anti-inflammatory pathway (CAP) inhibit cytokines production and controls inflammation. Thus, we investigated the effects of pharmacological activation of CAP by neostigmine on oxidative stress and airway inflammation in an allergic asthma model. After the OVA challenge, mice were treated with neostigmine. We showed that CAP activation by neostigmine reduced the levels of pro-inflammatory cytokines (IL-4, IL-5, IL-13, IL-1ß, and TNF-α), which resulted in a decrease of eosinophils influx. Furthermore, neostigmine also conferred airway protection against oxidative stress, attenuating ROS production through the increase of antioxidant defense, evidenced by the catalase (CAT) activity. We propose, for the first time, that pharmacological activation of the CAP can lead to new possibilities in the therapeutic management of allergic asthma.


Asthma/immunology , Inflammation/immunology , Neuroimmunomodulation/physiology , Oxidative Stress/immunology , Animals , Asthma/metabolism , Asthma/pathology , Cholinesterase Inhibitors/pharmacology , Disease Models, Animal , Female , Inflammation/metabolism , Inflammation/pathology , Mice , Mice, Inbred BALB C , Neostigmine/pharmacology , Neuroimmunomodulation/drug effects
15.
Biochim Biophys Acta Mol Basis Dis ; 1865(11): 165529, 2019 11 01.
Article En | MEDLINE | ID: mdl-31398469

Guanidinoacetate Methyltransferase deficiency is an inborn error of metabolism that results in decreased creatine and increased guanidinoacetate (GAA) levels. Patients present neurological symptoms whose mechanisms are unclear. We investigated the effects of an intrastriatal administration of 10 µM of GAA (0.02 nmol/striatum) on energy metabolism, redox state, inflammation, glutamate homeostasis, and activities/immunocontents of acetylcholinesterase and Na+,K+-ATPase, as well as on memory acquisition. The neuroprotective role of creatine was also investigated. Male Wistar rats were pretreated with creatine (50 mg/kg) or saline for 7 days underwenting stereotactic surgery. Forty-eight hours after surgery, the animals (then sixty-days-old) were divided into groups: Control, GAA, GAA + Creatine, and Creatine. Experiments were performed 30 min after intrastriatal infusion. GAA decreased SDH, complexes II and IV activities, and ATP levels, but had no effect on mitochondrial mass/membrane potential. Creatine totally prevented SDH and complex II, and partially prevented COX and ATP alterations. GAA increased dichlorofluorescein levels and decreased superoxide dismutase and catalase activities. Creatine only prevented catalase and dichlorofluorescein alterations. GAA increased cytokines, nitrites levels and acetylcholinesterase activity, but not its immunocontent. Creatine prevented such effects, except nitrite levels. GAA decreased glutamate uptake, but had no effect on the immunocontent of its transporters. GAA decreased Na+,K+-ATPase activity and increased the immunocontent of its α3 subunit. The performance on the novel object recognition task was also impaired. Creatine partially prevented the changes in glutamate uptake and Na+,K+-ATPase activity, and completely prevented the memory impairment. This study helps to elucidate the protective effects of creatine against the damage caused by GAA.


Creatine/therapeutic use , Glycine/analogs & derivatives , Neuroprotective Agents/therapeutic use , Neurotoxicity Syndromes/drug therapy , Acetylcholinesterase/metabolism , Animals , Cholinesterase Inhibitors/administration & dosage , Cholinesterase Inhibitors/toxicity , Creatine/pharmacology , Energy Metabolism/drug effects , Glycine/administration & dosage , Glycine/toxicity , Male , Memory/drug effects , Neuroprotective Agents/pharmacology , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/physiopathology , Oxidative Stress/drug effects , Rats, Wistar , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/metabolism
16.
J Cell Physiol ; 234(12): 23633-23646, 2019 12.
Article En | MEDLINE | ID: mdl-31180592

In asthma, there are high levels of inflammatory mediators, reactive oxygen species (ROS), and eosinophil extracellular traps (EETs) formation in airway. Here, we attempted to investigate the ROS involvement in EETs release and airway inflammation in OVA-challenged mice. Before the intranasal challenge with ovalbumin (OVA), animals were treated with two ROS inhibitors, N-acetylcysteine (NAC) or diphenyleneiodonium (DPI). We showed that NAC treatment reduced inflammatory cells in lung. DPI and NAC treatments reduced eosinophil peroxidase (EPO), goblet cells hyperplasia, proinflammatory cytokines, NFκB p65 immunocontent, and oxidative stress in lung. However, only the NAC treatment improved mitochondrial energy metabolism. Moreover, the treatments with DPI and NAC reduced EETs release in airway. This is the first study to show that ROS are needed for EETs formation in asthma. Based on our results, NAC and DPI treatments can be an interesting alternative for reducing airway inflammation, mitochondrial damage, and EETs release in asthma.


Asthma/pathology , Eosinophils/metabolism , Extracellular Traps/metabolism , Lung/pathology , Reactive Oxygen Species/metabolism , Acetylcysteine/pharmacology , Animals , Cytokines/metabolism , Energy Metabolism/physiology , Eosinophil Peroxidase/metabolism , Female , Goblet Cells/pathology , Mice , Mice, Inbred BALB C , Mitochondria/metabolism , Onium Compounds/pharmacology , Ovalbumin/toxicity , Oxidative Stress/physiology , Transcription Factor RelA/metabolism
17.
Hig. aliment ; 33(288/289): 2616-2620, abr.-maio 2019. tab
Article Pt | LILACS, VETINDEX | ID: biblio-1482272

O objetivo do trabalho foi analisar a qualidade microbiológica do Queijo Minas Artesanal produzido por queijarias certificadas da microrregião Canastra durante os anos de 2016 e 2017, utilizando os resultados das análises microbiológicas do queijo nestes anos. Foram encontradas não conformidades nos queijos estudados em 7,84% das amostras para Coliformes totais, 3,92% para coliformes termotolerantes e 9,8% para Staphylococcus coagulase positivo, porém nenhuma análise apresentou presença de Listeria spp. ou Salmonella spp. Apesar das principais bactérias patogênicas não terem sido encontradas, as não conformidades indicam a necessidade da orientação do produtor sobre as Boas Práticas de Fabricação e de Ordenha. Além disto, é imprescindível a orientação sobre as exigências do órgão fiscalizador e a realização da análise do queijo periodicamente, tornando possível o acompanhamento da qualidade do queijo produzido na região e a correção das não conformidades encontradas.


Listeria/isolation & purification , Food Microbiology , Cheese/microbiology , Salmonella/isolation & purification , Staphylococcus/isolation & purification , Microbiological Techniques
18.
Hig. aliment ; 33(288/289): 1763-1767, abr.-maio 2019.
Article Pt | LILACS, VETINDEX | ID: biblio-1482400

A identificação de condenações em frigoríficos é importante para fornecer melhorias no processo produtivo e dados de possíveis fontes de contaminação na linha de abate. O objetivo foi identificar as causas de condenação de carcaças e vísceras bovinas, em um frigorífico de inspeção municipal em Minas Gerais, e discutir fatores que favorecem a ocorrência das mesmas. Foram analisados os registros de condenações no período de julho de 2017 a setembro de 2018. Do total de 3.723 animais abatidos, 101 (2,71%) apresentaram algum tipo de condenação. Foram condenados principalmente fígado, coração, fragmentos de caraças e carcaças inteiras. Abscessos hepáticos foram a causa mais frequente de condenação. Observamos que a frequência de descarte de carcaças e vísceras variaram entre os Serviços de Inspeção e estão relacionadas com a região estudada.


Animals , Cattle , Liver Abscess/veterinary , Meat/analysis , 24454 , Abattoirs , Tuberculosis, Lymph Node/veterinary , Animal Culling , Food Inspection
19.
Int J Dev Neurosci ; 71: 122-129, 2018 Dec.
Article En | MEDLINE | ID: mdl-30172894

The aim of this study was to verify the effects of ovariectomy (OVX) and/or vitamin D supplementation (VIT D) on inflammatory and cholinergic parameters in hippocampus, as well as on serum estradiol and VIT D levels of rats. Ninety-day-old female Wistar rats were randomly divided into four groups: SHAM, OVX, VIT D or OVX + VIT D. Thirty days after OVX, VIT D (500 IU/kg/day) was supplemented by gavage, for 30 days. Approximately 12 h after the last VIT D administration, rats were euthanized and hippocampus and serum were obtained for further analyses. Results showed that OVX rats presented a decrease in estradiol levels when compared to control (SHAM). There was an increase in VIT D levels in the groups submitted to VIT D supplementation. OVX increased the immunocontent of nuclear p-NF-κB/p65, TNF-α and IL-6 levels. VIT D partially reversed the increase in p-NF-κB/p65 immunocontent and IL-6 levels. Regarding cholinergic system, OVX caused an increase in acetylcholinesterase activity without changing acetylcholinesterase and choline acetyltransferase immunocontents. VIT D did not reverse the increase in acetylcholinesterase activity caused by OVX. These results demonstrate that OVX alters inflammatory and cholinergic parameters and that VIT D supplementation, at the dose used, partially reversed the increase in immunocontent of p-NF-Kb/p65 and IL-6 levels, but it was not able to reverse other parameters studied. Our findings may help in the understanding of the brain changes that occurs in post menopause period and open perspectives for futures research involving VIT D therapies.


Acetylcholinesterase/metabolism , Hippocampus/drug effects , Interleukin-6/metabolism , Transcription Factor RelA/metabolism , Vitamin D/pharmacology , Analysis of Variance , Animals , Body Weight/drug effects , Calcifediol/blood , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cytokines/metabolism , Cytosol/drug effects , Cytosol/metabolism , Dietary Supplements , Eating/drug effects , Estradiol/blood , Female , Gene Expression Regulation/drug effects , Hippocampus/metabolism , Ovariectomy , Rats , Rats, Wistar
20.
Mol Neurobiol ; 55(11): 8538-8549, 2018 Nov.
Article En | MEDLINE | ID: mdl-29564809

Kynurenic acid (KYNA) and quinolinic acid (QUIN) are metabolites produced in the degradation of tryptophan and have important neurological activities. KYNA/QUIN ratio changes are known to be associated with central nervous system disorders, such Alzheimer, Parkinson, and Huntington diseases. In the present study, we investigate the ability of KYNA in prevent the first events preceding QUIN-induced neurodegeneration in striatal slices of rat. We evaluated the protective effect of KYNA on oxidative status (reactive oxygen species production, antioxidant enzymes activities, lipid peroxidation, nitrite levels, protein and DNA damage, and iNOS immunocontent), mitochondrial function (mitochondrial mass, membrane potential, and respiratory chain enzymes), and Na+,K+-ATPase in striatal slices of rats treated with QUIN. Since QUIN alters the levels of Nrf2, we evaluated the influence of KYNA protection on this parameter. Striatal slices from 30-day-old Wistar rats were preincubated with KYNA (100 µM) for 15 min, followed by incubation with 100-µM QUIN for 30 min. Results showed that KYNA prevented the increase of ROS production caused by QUIN and restored antioxidant enzyme activities and the protein and lipid damage, as well as the Nrf2 levels. KYNA also prevented the effects of QUIN on mitochondrial mass and mitochondrial membrane potential, as well as the decrease in the activities of complex II, SDH, and Na+,K+-ATPase. We suggest that KYNA prevents changes in Nrf2 levels, oxidative imbalance, and mitochondrial dysfunction caused by QUIN in striatal slices. This study elucidates some of the protective effects of KYNA against the damage caused by QUIN toxicity.


Corpus Striatum/pathology , Kynurenic Acid/pharmacology , NF-E2-Related Factor 2/metabolism , Quinolinic Acid/toxicity , Animals , Antioxidants/metabolism , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Fluoresceins/metabolism , Male , Mitochondria/drug effects , Mitochondria/metabolism , Neuroprotective Agents/pharmacology , Nitric Oxide Synthase Type II/metabolism , Nitrites/metabolism , Oxidation-Reduction , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Sulfhydryl Compounds/metabolism
...